Pathomorphological Changes in the Spleen of Turkey Broilers Challenged with Aflatoxin B1 Alone or Co-Administered with Mycotox NG -

Nelly Grozeva¹, Ivan Valchev², Rumen Binev²*, Lazarin Lazarov², Tsanko Hristov² and Dian Kanakov²

¹Department of General and Clinical Pathology
²Department of Internal Non-Infectious Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria

*Address for Correspondence: Rumen Binev, Department of Internal Non-Infectious Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria, E-Mail: binew@abv.bg

Submitted: 06 July 2017; Approved: 20 July 2017; Published: 24 July 2017

Copyright: © 2017 Binev R, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
INTRODUCTION

Aflatoxins are groups of closely related biologically active substances with minor differences in their chemical structure [1]. For the first time, aflatoxins were isolated more than 40 years ago in an outbreak of Turkey X disease Cullen and Newberne, [2] and rainbow trout cancer Blount, [3] after feeding diets comprising peanuts and cotton meal. These mycotoxins are secondary toxic metabolites produced by the genus Aspergillus (Aspergillus flavus and Aspergillus parasiticus) - coumarin derivatives containing a dihydrofurofuran moiety.

Aflatoxins are fluorescent compounds: under ultraviolet rays, aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) have a blue fluorescence while aflatoxin G1 (AFG1) and G2 (AFG2); yellow-green [4]. Aflatoxin B1 (AFB1) is the commonest metabolite in plant substrates and at the same time, the most toxic one. It is frequently encountered in cereal crops and peanut meal Gowda, et al. [5] and is the most potent liver carcinogen [6]. The toxicity of aflatoxin B2 (AFB2), G1 (AFG1) and G2 (AFG2) is 10%, 20% and 50% of that of AFB1, respectively [7]. Aflatoxins are a group of almost 20 Aspergillus metabolites with similar chemical structure responsible for decay of plant substrates [8].

Aflatoxins are resistant to food processing and therefore could be found both in animal feeds and foodstuffs for direct consumption or processed foods, posing a risk for human health [9].

All bird species are sensitive to aflatoxin toxicity and although they do not receive relatively high concentrations with the feed to end lethally, low levels could be also deleterious after continuous intake. Growing birds, especially ducklings and turkey poultry are extremely sensitive to the toxic effects of aflatoxins. The total aflatoxin content in the feeds for poultry should not exceed 20 μg/ kg feed. Nevertheless, levels lower than 20 μg/ kg feed also induce lower resistance to diseases and stress [10]. The toxic effects of aflatoxins in domestic fowl are studied in detail with regard to their carcinogenic, teratogenic, mutagenic and growth inhibiting effects [11,12]. The occurring haematological, biochemical (decreased serum total protein, albumin, inorganic phosphorus, uric acid, total cholesterol and the values of haematocrit, red blood cell counts, mean corpuscular volume, haemoglobin, thrombocyte counts, percentage of monocyte counts; increased values of white blood cell and heterophil counts) Oguz, et al. [13], immunological (depression in anti-Brucella abortus antibodies) Qureshi, et al. [14] and morphological (hydropic degeneration in liver; significantly reduced in size bursa of Fabricius and depletion of lymphoid cells from the follicles with necrosis and hyperplasia of mucosal epithelium, intraepithelial cysts oedema in the intraepithelial areas and heterophil infiltration; reduction in the size thymus and depletion of lymphocytes from the cortical and medullary areas; slight lymphoid depletion of periarteriolar lymphoid tusses in spleen; pale kidney with degeneration and/or necrosis of tubular epithelium [15].

The morphological changes in the spleen are characterized with lymphocytic degeneration, fatty dystrophy and haemorrhagic foci [16], congestive events in the red pulp, reduction of lymphocytes, vacular dystrophy [17], depletion of lymphoid cells, reticular cell hyperplasia, lymphocytolysis and increased germinal cell counts.

A number of strategies for detoxication of mycotoxin-contaminated feeds are proposed: physical separation, heat inactivation, irradiation, microbial degradation, treatment with chemicals. These methods of detoxication of aflatoxin-contaminated feeds are expensive [18]. The utilization of inert mycosorbents as hydrated calcium sodium alumino silicate (HSCAS) [19], zeolites [20], bentonites [21], active charcoal [22] or bioproducts - live yeast cultures [23] are among the most extensively studied. Mycosorbents reduce the bioavailability of mycotoxins in blood and prevent their absorption in the intestines. Regardless of that, some of them reduce also the bioavailability of amino acids and/or minerals [24].

The aim of the present investigation was to evaluate the toxic effects of aflatoxin B1 (AFB1) on spleen morphology after its independent application or in combination with a mycosorbent (Mycotox NB). MATERIAL AND METHODS

Experimental design

The experiment was performed with 60 7-day-old female turkey broilers (from the meat TM strain) randomly divided into six groups (n = 10).

All birds were fed standard feed according to the species and age, produced by a feed factory. The experimental design comprised: Group I - control; Group II - experimental, supplemented with 0.5 g/ kg Mycotox NG (micronised yeasts, montmorillonite, thymol); Group III - experimental, whose feed contained 0.2 mg/ kg aflatoxin; Turkey broilers; Spleen; Mycotox NG. The duration of the experiments was 42 days. Specimens were collected from the spleen of birds for histological examination after euthanasia by cervical dislocation, fixed in 10% neutral formalin, dehydrated in alcohol series and embedded into paraffin. The 3 μm cross sections were cut on a microtome (Leica RM 2235) and stained with haematoxylin-eosin.

Pathomorphological changes affected mainly the lymphatic tissue of germinative centres, whose number and size were reduced in birds from group IV and most cells exhibited degenerative (necrotic to necrotic) processes. In birds of group III, degenerative changes were less intensive (granular and vacuolar dystrophy) compared to the other groups. In birds off groups V and VI, the supplementation of toxin binder reduced partly the severity of morphological changes as congestion among lymphatic follicles in red and white pulp, slight granular and vacuolar dystrophy.

Keywords: Aflatoxin B1; Turkey broilers; Spleen; Mycotox NG

Summary

The aim of the present study was to evaluate the toxic effects of aflatoxin B1 (AFB1) on spleen morphology after its independent application or in combination with a mycosorbent (Mycotox NB) in turkey broilers. Experiments was carried out with 60 female turkey broilers 7-day age (meat TM strain) and divided into one control and five treatment groups (n = 10). Groups were as followed: Group I - control (fed standard feed according to the species and age of birds); Group II - feed by supplement with 0.5 g/ kg Mycotox NG, Group III - feed by supplementation with - 0.2 mg/ kg aflatoxin B1, Group IV -feed supplementation with - 0.4 mg/ kg aflatoxin B1, Group V - fed by supplementation with - with 0.2 mg/ kg aflatoxin B1 and 0.5 g/ kg Mycotox NG and Group VI - fed by supplementation with - with 0.4 mg/ kg aflatoxin B1, and 0.5 g/ kg Mycotox NG. The duration of the experiments was 42 days. Specimens were collected from the spleen of birds for histological examination after euthanasia by cervical dislocation, fixed in 10% neutral formalin, dehydrated in alcohol series and embedded into paraffin. The 3 μm cross sections were cut on a microtome (Leica RM 2235) and stained with haematoxylin-eosin. Pathomorphological changes affected mainly the lymphatic tissue of germinative centres, whose number and size were reduced in birds from group IV and most cells exhibited degenerative (necrotic to necrotic) processes. In birds of group III, degenerative changes were less intensive (granular and vacuolar dystrophy) compared to the other groups. In birds off groups V and VI, the supplementation of toxin binder reduced partly the severity of morphological changes as congestion among lymphatic follicles in red and white pulp, slight granular and vacuolar dystrophy.

Keywords: Aflatoxin B1; Turkey broilers; Spleen; Mycotox NG
B; Group IV - experimental, whose feed contained 0.4 mg/ kg aflatoxin B; Group V - experimental, supplemented with 0.2 mg/ kg aflatoxin B and 0.5 g/ kg Mycotox NG; Group VI - experimental, supplemented with 0.4 mg/ kg aflatoxin B and 0.5 g/ kg Mycotox NG.

Aflatoxin B, used in this experiment was produced by Aspergillus flavus, 99% purity (Sigma-Aldrich, Germany). All birds were housed under optimum microclimatic conditions as per [25].

After the trial, turkey poults from the control and experimental groups were euthanised via cervical dislocation according to [26]. Spleen specimens for histological study were fixed in 10% neutral formalin, dehydrated in ascending alcohol series and embedded in paraffin. Paraffin blocks were cut on a microtome Leica RM 2235 (Leica Biosystems Nussloch GmbH, Germany), with cross section thickness of 3 μm. They were stained with haematoxylin-eosin using routine histological techniques.

The experiment was approved by the Bulgarian Food Safety Agency - permit No 19218/06.11.2014. Statistical analysis was done with Statistica 6.0 (Windows) software, StatSoft, Inc. (USA, 1993) and ANOVA test. Data are presented as mean ± standard deviation (SD). The level of statistically significance was \(p < 0.05 \).

RESULTS

The relative weights of the spleen (g/100 g live weight) are presented in table 1. They were statistically significantly lower in birds from Groups III and IV (by 28.79% and 31.82%, respectively) compared to controls (\(p < 0.001 \)). The addition of toxin binder to the feed of Groups V and VI prevented the reduction of relative spleen weights. There was no statistically significant difference between relative spleen weights of groups V and VI vs the control group (\(p > 0.05 \)).

Pathomorphological studies

The most important pathomorphological changes in the spleen affected predominantly the lymph tissue of germinal centers. Turkey poults from the experimental group III supplemented with 0.2 mg/ kg AFB, exhibited mild degenerative changes comprising karyopyknosis, karyorrhexis and karyolysis of nuclei and rarefaction of lymphoid cells (Figure 1). Generalized hyperplasia of tunica intima of splenic arterioles could be detected (Figure 2).

In turkey poults from Group IV -, which received 0.4 mg/ kg AFB, in their feed, the degenerative changes in the spleen were rather more extensive. Lymph follicle rarefaction was enhanced, with necrotic foci in some areas (Figure 3). Occasionally, hemorrhagic foci could be seen in the splenic pulp. Red pulp hemosiderosis was observed as well (Figure 4). Along with these changes, sclerosis of the central artery was present (Figure 5).

The degenerative changes in Group V (0.2 mg/ kg AFB, and 0.5 g/kg Mycotox NG) were of lower intensity compared to those established in turkey poults from Groups III and IV. Morphological changes consisted mainly in congestive events in the red pulp and decreased density of lymphoid cells (Figure 6).

Table 1: Effects of aflatoxin B, (AFB,), alone or co-administered with Mycotox NG on the relative weight of the spleen in turkey poults.

<table>
<thead>
<tr>
<th>Groups</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.132 ± 0.021(^{a})</td>
<td>0.136 ± 0.021(^{a})</td>
<td>0.094 ± 0.093(^{b})</td>
<td>0.09 ± 0.009(^{b})</td>
<td>0.16 ± 0.008(^{a})</td>
<td>0.15 ± 0.015(^{a})</td>
</tr>
</tbody>
</table>

Different superscripts \(^{a,b} \) indicates significant differences (\(p < 0.05 \) or more) between experimental and control groups (\(P < 0.05 \)). The results are presented as mean ± SEM; n = 10 in each group.
Birds and fish are highly sensitive to the toxic impact of AFB1, and react to low doses within the range 15-30 ppb [30]. The bioactivation of aflatoxins is done in hepatocytes through microsomal enzyme systems - cytochrome P450 (CYP450) where they are transformed into reactive aflatoxin-8,9-epoxide (AFBO), which is the primary most toxic metabolite. This reactive compound inhibits protein synthesis, causes liver damage, immunosuppressive effects and decreases productive performance. Domestic turkeys are highly sensitive to the toxic effects of AFB1. In them, liver class alpha glutathione S-transferases (GSTA) are not capable to detoxify AFBO, which is probably the main reason for the high susceptibility of the species [30].

Sehu, et al. [31] reported that aflatoxins reduced the weight of immunocompetent organs (thymus, spleen, bursa of fabricius) in quails fed feed with total aflatoxin content of 2.5 mg/kg. Compared to control group, the relative weight of the spleen in dietary treatments with AFB1 only was lower. This reduction of immunocompetent organ weights was possibly due to necrosis and decreased density of lymphoid cells [32].

Aflatoxins induce immunosuppression in domestic fowl by altering the morphological structure of immunocompetent organs (thymus, spleen, bursa of Fabricius) [33]. Rats supplemented with 1 mg/kg AFB1 with the feed for 6 weeks exhibited degenerative and haemorrhagic foci in the splenic pulp, degenerated blood cells, megakaryocytes, irregular arrangement of leukocytes in the white pulp, haemosiderin granules, and congestion [34]. In
broiler chickens treated with 0.2 mg/ kg AFB1, Sakhare, et al. [35] observed necrotic foci in germinative centers, central artery sclerosis, reduced number of lymphocytes, hyperplasia of tunica intima and destruction of elastic fibres. Decreased density of lymphoid cells in immunocompetent organs (bursa of Fabricius, thymus, spleen, caecal tonsils, Harderian glands) were found out in broiler chickens treated with citrinin and aflatoxin either alone or in combination [36]. Balachandran and Hashem, Mohamed, [37,38] demonstrated lower with citrinin and aflatoxin either alone or in combination [36]. Balachandran and Hashem, Mohamed, [37,38] demonstrated lower

...lesions also supported the immunotoxic effects of aflatoxins [39,40]. Immunotoxic effects of aflatoxins are well studied in domestic poultry [33,41,42]. In previous 28 days. Observed splenic lesions also supported the immunotoxic effects of aflatoxins [39,40]. Immunotoxic effects of aflatoxins are well studied in domestic poultry [33,41,42]. In previous studies of ours with broiler chickens Balchev, et al. [43] treated by supplementation of the feed with 0.5 mg/ kg AFB1 or 0.8 mg/ kg AFB1, dystrophic changes in lymphoid cells and reduced lymphoid cell density (lymph tissue reduction) were found out. Rats treated with 1 mg/ kg AFB1, for 6 weeks exhibited lymphocyte degeneration, hemorrhages, degenerated blood cells, megakaryocytes, congestion in blood sinuses, necrotic foci, atrophy of the white pulp and irregular arrangement of leukocytes in the white pulp, (16). The morphological structural changes demonstrated by this study were similar to changes in immunocompetent organs (thymus and bursa of Fabricius) reported by Kumar and Balachandran, [44] in broiler chickens treated with 1 mg/ kg AFB1, over 28 days. It was demonstrated that the toxic effect of aflatoxins on lymphoid or hematopoetic organs resulted in rarefaction of lymphoid cell density in the white pulp and red pulp hemosiderosis [45].

Aflatoxins impair the synthesis of proteins by forming adducts with DNA, RNA and proteins [46], RNA synthesis inhibition, reduced activity of DNA-dependent RNA polymerase and degranulation of granulated endoplasmic reticulum [47] - mechanisms through which the structure of a number of tissues (liver, kidneys, skeletal muscles, heart, pancreas, immunocompetent organs) [48-50]. It is reported that aflatoxins enhance lipid peroxidation (LPO) and induce cellular damage resulting in alteration of normal morphological structure of parenchymal organs [51,52].

The addition of Mycotox NG to the diet of birds from Groups V and VI reduced the deleterious effects of AFB1, on histopathological changes in the spleen of broiler chickens. Less severe histological lesions of immunocompetent organs were found out in broiler chickens after supplemented of aflatoxin-contaminated feed with natural zeolite (clinoptilolite) [33,41], herbomineral mycosorbent-Toxiroak [35] or of Mycotox NG [43]. The negative polarity of mycotoxins is attracted by the positive polarity of the toxin binder - a mechanism through which toxin are immobilized and eliminated from the organism of animals [54].

CONCLUSION

The tested AFB1 amounts induced dose-dependent morphological alterations in the spleen (degenerative changes in lymph follicle, hyperplasia of tunica intima of splenic arterioles, rarefaction with necrotic foci), the relative weight of the spleen was lower compared to that of control birds. The addition of 0.5 g/ kg mycosenort (Mycotox NG) to the ratio of Groups V and VI that contained either 0.2 mg/ kg or 0.4 mg/ kg AFB1, partly reduced the deleterious effects of AFB1 on spleen relative weight and the histological changes (congestive events decreased, density of lymphoid cells and thickening of the intima of splenic arteries and occasionally, hemosiderosis) in this organ.

REFERENCES

