Research Article

Pathomorphological Changes in the Spleen of Turkey Broilers Challenged with Aflatoxin B1 Alone or Co-Administered with Mycotox NG - ©

Nelly Grozeva¹, Ivan Valchev², Rumen Binev²*, Lazarin Lazarov², Tsanko Hristov² and Dian Kanakov²

¹Department of General and Clinical Pathology
²Department of Internal Non-Infectious Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria

*Address for Correspondence: Rumen Binev, Department of Internal Non-Infectious Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria, E-Mail: binew@abv.bg

Submitted: 06 July 2017; Approved: 20 July 2017; Published: 24 July 2017

Copyright: ©2017 Binev R, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
INTRODUCTION

Aflatoxins are groups of closely related biologically active substances with minor differences in their chemical structure [1]. For the first time, aflatoxins were isolated more than 40 years ago in an outbreak of Turkey X disease Cullen and Newberne, [2] and rainbow trout cancer Blount, [3] after feeding diets comprising peanuts and cotton meal. These mycotoxins are secondary toxic metabolites produced by the genus Aspergillus (Aspergillus flavus and Aspergillus parasiticus) - coumarin derivatives containing a dihydrofurofuran moiety.

Aflatoxins are fluorescent compounds: under ultraviolet rays, aflatoxin B₁ (AFB₁) and aflatoxin B₂ (AFB₂) have a blue fluorescence while aflatoxin G₁ (AFG₁) and G₂ (AFG₂); yellow-green [4]. Aflatoxin is the commonest metabolite in plant substrates and at the same time, the most toxic one. It is frequently encountered in cereal crops and peanut meal Gowda, et al. [5] and is the most potent liver carcinogen [6]. The toxicity of aflatoxin B₁ (AFB₁) and B₂ (AFB₂) has a blue fluorescence while aflatoxin G₁ (AFG₁) and G₂ (AFG₂) is 10%, 20% and 50% of that of AFB₁, respectively [7]. Aflatoxins are a group of 20 Aspergillus metabolites with similar chemical structure responsible for decay of plant substrates [8].

Aflatoxins are resistant to food processing and therefore could be found both in animal feeds and foodstuffs for direct consumption or processed foods, posing a risk for human health [9].

All bird species are sensitive to aflatoxin toxicity and although they do not receive relatively high concentrations with the feed to end lethally, low levels could be also deleterious after continuous intake. Growing birds, especially ducklings and turkey poultry are extremely sensitive to the toxic effects of aflatoxins. The total aflatoxin content in the feeds for poultry should not exceed 20 μg/ kg feed. Nevertheless, levels lower than 20 μg/ kg feed also induce lower resistance to diseases and stress [10]. The toxic effects of aflatoxins in domestic fowl are studied in detail with regard to their carcinogenic, teratogenic, mutagenic and growth inhibiting effects [11,12]. The occurring haematological, biochemical (decreased serum total protein, albumin, inorganic phosphorus, uric acid, total cholesterol and the values of haematocrit, red blood cells count, mean corpuscular volume, haemoglobin, thrombocyte counts, percentage of monocyte counts; increased values of white blood cell and heterophil counts) Oguz, et al. [13], immunological (depression in anti-Brucella abortus antibodies) Qureshi, et al. [14] and morphological (hydropic degeneration in liver; significantly reduced in size bursa of Fabricius and depletion of lymphoid cells from the follicles with necrosis and hyperplasia of mucosal epithelium, intraepithelial cysts oedema in the intraepithelial areas and heterophil infiltration; reduction in the size thymus and depletion of lymphocytes from the cortical and medullary areas; slight lymphoid depletion of parieto-renal lymphoid tussis in spleen; pale kidney with degeneration and/or necrosis of tubular epithelium [15].

The morphological changes in the spleen are characterized with lymphocytic degeneration, fatty dystrophy and haemorrhagic foci [16], congestive events in the red pulp, reduction of lymphocytes, vacuolar dystrophy [17], depletion of lymphoid cells, reticular cell hyperplasia, lymphocytolysis and increased germinal cell counts.

A number of strategies for detoxication of mycotoxin-contaminated feeds are proposed: physical separation, heat inactivation, irradiation, microbial degradation, treatment with chemicals. These methods of detoxication of aflatoxin-contaminated feeds are expensive [18]. The utilization of inert mycosorbents as hydrated calcium sodium aluminosilicate (HSCAS) [19], zeolites [20], bentonites [21], active charcoal [22] or bioproducts - live yeast and microorganisms (used in combination with a mycosorbent (Mycotox NB). The aim of the present investigation was to evaluate the toxic effects of aflatoxin B₁ (AFB₁) on spleen morphology after its independent application or in combination with a mycosorbent (Mycotox NB).

MATERIAL AND METHODS

Experimental design

The experiment was performed with 60 7-day-old female turkey broilers (from the meat TM strain) randomly divided into six groups (n = 10).

All birds were fed standard feed according to the species and age, produced by a feed factory. The experimental design comprised: Group I - control; Group II - experimental, supplemented with 0.5 g/ kg Mycotox NG (micronised yeasts, montmorillonite, thymol); Group III - experimental, whose feed contained 0.2 mg/ kg aflatoxin

Keywords: Aflatoxin B₁; Turkey broilers; Spleen; Mycotox NG
B; Group IV - experimental, whose feed contained 0.4 mg/kg aflatoxin B; Group V - experimental, supplemented with 0.2 mg/kg aflatoxin B, and 0.5 g/kg Mycotox NG; Group VI - experimental, supplemented with 0.4 mg/kg aflatoxin B, and 0.5 g/kg Mycotox NG.

Aflatoxin B1 used in this experiment was produced by *Aspergillus flavus*, 99% purity (Sigma-Aldrich, Germany). All birds were housed under optimum microclimatic conditions as per [25].

After the trial, turkey poults from the control and experimental groups were euthanised via cervical dislocation according to [26]. Spleen specimens for histological study were fixed in 10% neutral formalin, dehydrated in ascending alcohol series and embedded in paraffin. Paraffin blocks were cut on a microtome Leica RM 2235 (Leica Biosystems Nussloch GmbH, Germany), with cross section thickness of 3 μm. They were stained with haematoxylin-eosin using routine histological techniques.

The experiment was approved by the Bulgarian Food Safety Agency - permit No 19218/06.11.2014. Statistical analysis was done with Statistica 6.0 (Windows) software, StatSoft, Inc. (USA, 1993) and ANOVA test. Data are presented as mean ± standard deviation (SD). The level of statistically significance was *p* < 0.05.

RESULTS

The relative weights of the spleen (g/100 g live weight) are presented in Table 1. They were statistically significantly lower in birds from Groups III and IV (by 28.79% and 31.82%, respectively) compared to controls (*p* < 0.001). The addition of toxin binder to the feed of Groups V and VI prevented the reduction of relative spleen weights. There was no statistically significant difference between relative spleen weights of groups V and VI vs the control group (*p* > 0.05).

Pathomorphological studies

The most important pathomorphological changes in the spleen affected predominantly the lymph tissue of germinal centers. Turkey poults from the experimental group III supplemented with 0.2 mg/kg AFB1, exhibited mild degenerative changes comprising karyopyknosis, karyorrhexis and karyolysis of nuclei and rarefaction of lymphoid cells (Figure 1). Generalized hyperplasia of tunica intima of splenic arterioles could be detected (Figure 2).

In turkey poults from Group IV, which received 0.4 mg/kg AFB1, in their feed, the degenerative changes in the spleen were rather more extensive. Lymph follicle rarefaction was enhanced, with necrotic foci in some areas (Figure 3). Occasionally, hemorrhagic foci could be seen in the splenic pulp. Red pulp hemosiderosis was observed as well (Figure 4). Along with these changes, sclerosis of the central artery was present (Figure 5).

The degenerative changes in Group V (0.2 mg/kg AFB, and 0.5 g/kg Mycotox NG) were of lower intensity compared to those established in turkey poults from Groups III and IV. Morphological changes consisted mainly in congestive events in the red pulp and decreased density of lymphoid cells (Figure 6).

DISCUSSION

Mycotoxicoses are diseases induced by feeding mould-contaminated feed ingredients. Aflatoxin is the prevailing and primary metabolite found in animal feeds [27]. Aflatoxins are a serious concern for poultry industry due to their high toxicity and common occurrence in compound poultry feeds [28,29]. In most cases, aflatoxin content in poultry feeds is higher than the maximally allowed amount of 20 μg/kg feed [23].

<table>
<thead>
<tr>
<th>Groups</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.132 ± 0.021<sup>a</sup></td>
<td>0.136 ± 0.021<sup>a</sup></td>
<td>0.094 ± 0.003<sup>b</sup></td>
<td>0.09 ± 0.009<sup>b</sup></td>
<td>0.16 ± 0.008<sup>a</sup></td>
<td>0.15 ± 0.015<sup>a</sup></td>
</tr>
</tbody>
</table>

The results are presented as mean ± SEM; *n* = 10 in each group.

Table 1: Effects of aflatoxin B, (AFB), alone or co-administered with Mycotox NG on the relative weight of the spleen in turkey poults.
Birds and fish are highly sensitive to the toxic impact of AFB1, and react to low doses within the range 15-30 ppb [30]. The bioactivation of aflatoxins is done in hepatocytes through microsomal enzyme systems - cytochrome P450 (CYP450) where they are transformed into reactive aflatoxin-8,9-epoxide (AFBO), which is the primary most toxic metabolite. This reactive compound inhibits protein synthesis, causes liver damage, immunosuppressive effects and decreases productive performance. Domestic turkeys are highly sensitive to the toxic effects of AFB1. In them, liver class alpha glutathione S-transferases (GSTA) are not capable to detoxify AFBO, which is probably the main reason for the high susceptibility of the species [30].

Sehu, et al. [31] reported that aflatoxins reduced the weight of immunocompetent organs (thymus, spleen, bursa of fabricius) in quails fed feed with total aflatoxin content of 2.5 mg/kg. Compared to control group, the relative weight of the spleen in dietary treatments with AFB1 only was lower. This reduction of immunocompetent organ weights was possibly due to necrosis and decreased density of lymphoid cells [32].

Aflatoxins induce immunosuppression in domestic fowl by altering the morphological structure of immunocompetent organs (thymus, spleen, bursa of Fabricius) [33]. Rats supplemented with 1 mg/kg AFB1 with the feed for 6 weeks exhibited degenerative and haemorrhagic foci in the splenic pulp, degenerated blood cells, megakaryocytes, irregular arrangement of leukocytes in the white pulp, haemosiderin granules, and congestion [34].
broiler chickens treated with 0.2 mg/kg AFB₁, Sakhare, et al. [35] observed necrotic foci in germinative centers, central artery sclerosis, reduced number of lymphocytes, hyperplasia of tunica intima and destruction of elastic fibres. Decreased density of lymphoid cells in immunocompetent organs (bursa of Fabricius, thymus, spleen, caecal tonsils, Harderian glands) were found out in broiler chickens treated with citrinin and aflatoxin either alone or in combination [36]. Balachandran and Hashem, Mohamed, [37,38] demonstrated lower lymphoid cell density and necrotic changes in the bursa of Fabricius and the spleen, increased number of germinal centres and reticular hyperplasia in broiler chickens receiving 1 mg aflatoxin/kg feed over 28 days. Observed splenic lesions also supported the immunotoxic and haemotoxic effects of aflatoxins [39,40]. Immunotoxic effects of aflatoxins are well studied in domestic poultry [33,41,42]. In previous studies of ours with broiler chickens Valchev, et al. [43] treated by supplementation of the feed with 0.5 mg/kg AFB₁ studies of ours with broiler chickens Valchev, et al. [43] treated by supplementation of the feed with 0.5 mg/kg AFB₁, or 0.4 mg/kg AFB₁, dystrophic changes in lymphoid cells and reduced lymphoid cell density (lymph tissue reduction) were found out. Rats treated with 1 mg/kg AFB₁, for 6 weeks exhibited lymphocyte degeneration, hemorrhages, degenerated blood cells, megakaryocytes, congestion in blood sinuses, necrotic foci, atrophy of the white pulp and irregular arrangement of leukocytes in the white pulp, [16]. The morphological structural changes demonstrated by this study were similar to changes in immunocompetent organs (thymus and bursa of Fabricius) reported by Kumar and Balachandran, [44] in broiler chickens treated with 1 mg/kg AFB₁, over 28 days. It was demonstrated that the toxic effect of aflatoxins on lymphoid or hematopoetic organs resulted in rarefaction of lymphoid cell density in the white pulp and red pulp hemosiderosis [45].

Aflatoxins impair the synthesis of proteins by forming adducts with DNA, RNA and proteins [46], RNA synthesis inhibition, reduced activity of DNA-dependent RNA polymerase and degranulation of granulated endoplasmic reticulum [47] - mechanisms through which the structure of a number of tissues (liver, kidneys, skeletal muscles, heart, pancreas, immunocompetent organs) [48-50]. It is reported that aflatoxins enhance lipid peroxidation (LPO) and induce cellular damage resulting in alteration of normal morphological structure of parenchymal organs [51,52].

The addition of Mycotox NG to the diet of birds from Groups V and VI reduced the deleterious effects of AFB₁, on histopathological changes in the spleen of broiler chickens. Less severe histological lesions of immunocompetent organs were found out in broiler chickens after supplemented of aflatoxin-contaminated feed with natural zeolite (clinoptilolite) [33,41], herbo-mineral mycosorbent-Toxiroak [35] or of Mycotox NG [43]. The negative polarity of mycotoxins is attracted by the positive polarity of the toxin binder - a mechanism through which toxin are immobilized and eliminated from the organism of animals [54].

CONCLUSION

The tested AFB₁ amounts induced dose-dependent morphological alterations in the spleen (degenerative changes in lymph follicle, hyperplasia of tunica intima of splenic arterioles, rarefaction with necrotic foci), the relative weight of the spleen was lower compared to that of control birds. The addition of 0.5 g/kg mycosorbent (Mycotox NG) to the ratio of Groups V and VI that contained either 0.2 mg/kg or 0.4 mg/kg AFB₁, partly reduced the deleterious effects of AFB₁ on spleen relative weight and the histological changes (congestive events decreased, density of lymphoid cells and thickening of the intima of splenic arteries and occasionally, hemosiderosis) in this organ.

REFERENCES

5. Gowda NKS. Malathi V and Suganthi RU. Screening for aflatoxin and the effect of moisture, duration of storage and form of feed on fungal growth and toxin production in livestock feeds. Animal Feed and Nutrition Technology. 2003; 4: 45-51. https://doi.org/1co4mXc

25. Ordinance, 44/20.04.2006 for veterinary medical requirements to animal rearing facilities. Official Gazette 4 Appendix B.

26. Ordinance No. 20 of 01.11.2012 on minimum requirements for protection and humane treatment of experimental animals and the requirements for the use, breeding and / or delivery of the animals, State Gazette, 87, 9.11.2012.

44. Kumar R, C. Balachandran. Pathological changes in broiler chicken fed aflatoxin and cyclopiazonic acid. XV Annual Conference of Indian Association of Veterinary Pathologists. 1998; 9-11.

