Management of Therapy Resistant Hypertension Guided by Non-Invasive Hemodynamic Measurements; an Observational Study -

Rainer Szulcek1, Robert Szulcek2 and Peter Lanzer3*

1Medizinisches Versorgungszentrum, Bitterfeld-Wolfen, Germany
2Department of Pulmonology and Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
3Mitteldeutsches Herzcentrum, Klinikum Bitterfeld, Bitterfeld Wolfen, Germany

*Address for Correspondence: Peter Lanzer, Mitteldeutsches Herzcentrum, Klinikum Bitterfeld, Gesundheitszentrum Bitterfeld-Wolfen gGmbH, Friedrich-Ludwig-Jahn-Straße 2, D-06749 Bitterfeld-Wolfen, Germany, Tel: +490-349-331-2301; Fax: +490-349-331-2304; E-mail: planzer@gzbiwo.de

Submitted: 05 February 2018; Approved: 02 March 2018; Published: 05 March 2018

Copyright: © 2018 Lanzer P, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
INTRODUCTION

Management of Therapy Resistant Hypertension (TRH) still represents a considerable medical challenge to both practitioners and specialists [1]. Based on current European guidelines TRH is defined as blood pressure >140/90 mmHg despite of life style adjustments, administration of a full dose of a diuretic and optimal dose of at least two antihypertensive agents of different classes [2]. At present TRH management is largely based on expertise-based empiricism of individual physicians conducting the treatment. Using this approach TRH rates of up to 20% of treated cohorts appears realistic [3,16].

Alternatively to the traditional approach, therapy based on pathophysiology of TRH in individual patients could be considered, provided availability of means to assess the major blood pressure modulators by simple and non-invasive means. Recently, based on the principles of thoracic impedance device [4] - non-invasive measurements of blood-pressure relevant hemodynamic parameters have become clinically available [4,5]. In an early multi-centric prospective randomized trial in patients with hypertension, but not TRH, no statistically relevant superiority of the pathophysiology- based over the standard empiricism- based approach was reported [5], possibly due to the already excellent management of these patients in the participating tertiary hypertension centers.

This study was designed to determine the efficacy of the individualized pathophysiology- guided management in patients with documented TRH in the real-life settings of an outpatient office in a non-randomized prospective model.

METHODS

Fifty patients treated for hypertension in the out-patient office of one of the authors (RaS) and with documented TRH were included in the study. Inclusion and exclusion criteria are given in table 1.

The study was approved by the Ethics committee of the chamber of physicians, Saxony – Anhalt; all patients signed informed consent.

Studies and evaluations performed at baseline, at six and 12 months follow up are summarized in table 2.

The hemodynamic modulators of blood pressure were the inotropicc, volume - and vasoactivity status of the patients. To determine these hemodynamic modulators HOTMAN-System designed to measure the thorax impedance was employed described elsewhere [4]. Briefly, the skin was prepared and 8 electrodes were placed in a standard fashion positioned at the left and right side of...
the neck and two electrodes on each side of the thorax and signal quality was controlled. To perform the measurements the patients were placed in recumbent position. Following 10 minutes of rest the blood pressure cuff was fastened on the upper arm (left or right upper arm, depending on the level of blood pressure; always the arm with the higher blood pressure was selected) and the pulse oximeter was attached to the tip of the second finger. Subsequently, in one minute intervals ten hemodynamic measurements and ten blood pressure measurements were taken and averaged. The hemodynamic measurements were automatically displayed on the rectangular matrix employing the vertical and horizontal axis for mean blood pressure and systemic impedance and diagonal co-ordinates system to display the hemodynamic modulators (Figure 1).

While, all patients received optimum medical treatment for TRH recommended by the current guidelines [2] all changes in medication were based on the outcome of the hemodynamic measurements; thus, in all patients the hemodynamic modulator with the highest deviation from the normal value was targeted.

All data were presented as average ± SD. Significance was assumed at the p ≤ 0.05. Statistical significance was calculated using the pairwise-one-way ANOVA repeated measure with Bonferroni’s multiple comparison post-hoc test. All statistical calculations were performed using the GraphPad Prism 6 (GraphPad Software, San Diego, CA, USA).

RESULTS

50 patients 22 females, 61.8 ± 8.0 years of age and 28 males, 63.0 ± 12.0 years of age were included in the study.

Demographic data

Office blood pressure measurements revealed statistically significant reduction from baseline 170.30 ± 20.7/ 90.8 ± 13.3 mmHg to 149.26 ± 18.5/ 82.3 ± 13.2 mmHg (p ≤ 0.001/ p ≤ 0.0015) at six months. Compared to the blood pressure measurements at six months no additional statistically significant reduction in blood pressure measurements at twelve months was observed (Figure 2).

Similarly, significant reduction in the mean 24 hours blood pressure with corresponding values of 144.4 ± 18.2/ 82.8 ± 12.6 mmHg at baseline and of 130.1 ± 15.5/ 76.2 ± 12.8 mmHg at six month follow-up was observed (p = 0.0001/ p = 0.0006). Compared to the blood pressure measurements at six months no additional statistically significant reduction in blood pressure measurements at twelve months was observed (Figure 3).

The impedance guided TRH monitoring led to a permanent decrease in mean blood pressure initially reached at the first follow-up interval of 6 months and kept stable for the remainder of the study.

Significant reduction in the mean blood pressure during the day with corresponding values of 146.3 ± 18.9/ 82.8 ± 12.6 mmHg at baseline and of 134.2 ± 16.6/ 78.2 ± 11.8 mmHg at six month follow-up was observed (p = 0.0001/ p = 0.001). Compared to the blood pressure measurements at six months no additional statistically significant reduction in blood pressure measurements at twelve months was observed (Figure 4).

Significant reduction in the mean blood pressure during the night with corresponding values of 140.1 ± 17.9/ 81.5 ± 14.7 mmHg at baseline and of 125.7 ± 16.8/ 71.3 ± 12.2 mmHg at six month follow-up was observed (p = 0.0001/ p = 0.0001). Compared to the
blood pressure measurements at six months no additional statistically
significant reduction in blood pressure measurements at twelve
months was observed (Figure 5).

Overall, after 12 months follow-up 20 patients (40%) have become
normotensive, in 17 patients (35%) the blood pressure control
improved without reaching normotensive blood pressure range, in
10 patients (20%) no improvement in blood pressure control was
achieved and in 3 patients (6%) blood pressure deteriorated.

Measurements of the hemodynamic modulators demonstrated
the highest prevalence and the highest deviation in the volume status;
at baseline 47 out of 50 (94%) patients were hypervolemic with a mean
hypervolemia of 136 ± 134%; one patient was hypovolemic and two
patients were normovolemic. At six months follow-up 49 patients
were hypervolemic and 1 patient was normovolemic; however,
the degree of hypervolemia was compared to baseline significantly
reduced (73.7 ± 26.4%; \(p = 0.002 \)). At twelve months follow-up no
further changes in volume status were observed.

DISCUSSION

Compared to hypertension TRH is associated with higher organ-
related morbidity and worse clinical prognosis [6]. Currently, patients
with TRH are largely treated employing the empiricism- based
algorithms [7]. Using this approach variable, yet significant number
of patients features suboptimal blood pressure control [1,8,9].

We hypothesized, that in patients with TRH medication
prescriptions based on the non-invasive measurements of the
hemodynamic variables using the thorax impedance might improve
blood pressure control.

By targeting the blood pressure modulator with the highest
deviation from the normal value significant reduction in both systolic
and diastolic blood pressure as determined by office and ambulatory
blood pressure measurements were achieved by six months with no
further significant changes at twelve months follow-up. Furthermore,
the 24-hours average systolic and diastolic blood pressures during
the daytime and in the night have followed the same pattern. In
addition, 40% of patients became normotensive; in 34% of patients
blood pressure control improved. Compared with the published
results of the standard guideline- directed therapy in patients with
TRH [10] slightly improved response rate and blood pressure control
using the hemodynamic guidance has been achieved. Although
significant improvement in blood pressure levels were achieved after
six months of treatment were achieved no further therapy effect was
achieved at twelve months follow-up. While the reasons for blood
pressure resistance to therapy between six and twelve months remain
obscure, slacking compliance, secondary compensatory responses to
antihypertensives, obesity- associated resistance to antihypertensives
and other factors might have been involved [11-15].

LIMITATIONS

The study was designed to proof the concept; not as blinded
randomized trial. The number of patients included in the study has
been limited to fifty and a study with a larger number of patients
may be needed to confirm the results. The study reflects the real-
life constrains typically encountered in an out-patient referral office
where only limited control of patients’ medication at baseline and
the follow-up points was possible. Changes in prescribed medication
due to hospital treatments or referring physicians’ preferences
might have partially affected the outcome of the study. The study
could have benefitted from quantitative echocardiography of the left
ventricular function and morphology, rather than being employed
only at baseline to exclude secondary cardiac causes of hypertension.
Finally, the initially administered renin antagonist aliskiren had to be
discontinued on follow-up due to withdrawal of the drug from the
market might have also impacted on the outcome.

SUMMARY

The study has proven that the concept of hemodynamically-
guided management of patients with TRH is feasible and promising.
However, to confirm the clinical utility of the thorax impedance-based non-invasive management of patients with TRH larger blinded and randomized trial will be necessary.

REFERENCES

Table 3: Summary of cardiovascular risk factor in the entire cohort, in males and in females.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>60.82 ± 10.34</th>
<th>62.95 ± 11.95</th>
<th>62.95 ± 11.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 50</td>
<td>N = 28</td>
<td>N = 22</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>31.25 ± 5.70</td>
<td>33.86 ± 5.47</td>
<td>32.40 ± 5.75</td>
</tr>
<tr>
<td>N = 50</td>
<td>N = 28</td>
<td>N = 22</td>
<td></td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>N = 19</td>
<td>N = 9</td>
<td>N = 10</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>N = 21</td>
<td>N = 10</td>
<td>N = 11</td>
</tr>
<tr>
<td>Chronic Renal Insuffi ciency</td>
<td>N = 9</td>
<td>N = 3</td>
<td>N = 6</td>
</tr>
</tbody>
</table>