From E-Oasis® to Medway®: An Observational Evaluation on Unintended Consequences in Surgical Patients Resulting from New Information Technology (IT) System Implementation in a Tertiary Care University Hospital in the United Kingdom -

Muhammad S Sajid¹*, Shehram Shafique², Mohammed Albendar¹, Christie Swaminathan¹ and Krishna K Singh¹

¹Department of Digestive diseases & Gastrointestinal Surgery, Brighton & Sussex University Hospitals NHS Trust, The Royal Sussex County Hospital, Eastern Road, Brighton, West Sussex, BN2 5BE, United Kingdom
²Department of Biomedical Sciences, St Georges University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom

*Address for Correspondence: Muhammad S Sajid, Consultant GI Surgeon, Royal Sussex County Hospital, Eastern Road, Brighton, BN2 5BE. United Kingdom, Tel: +440-127-369-6955/ +440-789-166-7608; E-mail: surgeon1wrh@hotmail.com

Submitted: 27 April 2020; Approved: 14 May 2020; Published: 16 May 2020

Cite this article: Sajid MS, Shafique S, Albendar M, Swaminathan C, Singh KK. From E-Oasis® to Medway®: An Observational Evaluation on Unintended Consequences in Surgical Patients Resulting from New Information Technology (IT) System Implementation in a Tertiary Care University Hospital in the United Kingdom. Open J Surg. 2020;4(2): 029-032.

Copyright: © 2020 Sajid MS, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
INTRODUCTION

The provision of safe healthcare in the contemporary era of rapidly evolving information technology is challenging and may well be posing significantly unique consequences for healthcare consumers. The process of health-care provision in any modern health-care system should be associated with every possible measure to reduce errors and adverse events [1,2]. Health Information Technology (HIT) is used to collect, transmit, display, track or store patient data related to demographics, investigations, treatment strategies, clinic reviews and follow-up pathways [3]. Several developed countries such as the United States of America, United Kingdom (UK), Australia, and Canada have proactively encouraged the implementation and continuous upgrade of HIT to enhance patient safety [4,5].

The widespread utilization of HIT in healthcare delivery undoubtedly brings several potential health-care benefits. But at the same time, snags with HIT can seriously disrupt the safe delivery of healthcare and substantially increase the likelihood of unique, new, often unforeseen errors that affect the safety and quality of clinical care resulting in patient harm [6-13]. It is imperative to understand the ways by which HIT related issues can disrupt healthcare delivery posing threats to patient safety in order to reap its true benefits. The incidence of HIT related adverse and safety incidents are at risk of rising due to less homogenous policies, non-existent guidelines and lack of targeted training for end-users. Brighton & Sussex University Hospitals NHS Trust is a tertiary care referral center for major regional trauma network, for the management of upper and lower gastrointestinal cancer and it is equipped with all modern day multi-specialty care facilities. This Trust provides health care facilities to almost half million population on the South Coast of the England.

The objective of current study is to evaluate the unintended consequences of changing HIT system in a tertiary care University Hospital and its influence on patient safety with outcomes such as patient related incidents, system related incidents and any other work-place related incidents hampering work-flow and continuity of care.

METHODS

This prospective observational study was conducted in a tertiary care center Brighton & Sussex University Hospitals NHS Trust when HIT system was changed from e-oasis to an innovative broad-spectrum Medway®. The data for study cohort was collected prospectively and it was compared with the retrospective data of similar period before the implementation of Medway®. The data was collected related to the patients treated or investigated by the Digestive Disease Centre- surgical discipline. Major study variables included were the health care related incidents such as missed appointments in clinics, theatre list or operation cancellations, under-bookings or over-bookings of the patients for a clinical appointment and IT related errors responsible for delay in the provision of health-care. Main HIT related incidents were collected prospectively for 4 weeks from the implementation date of Medway® and compared to same outcomes in previous 4 weeks when e-oasis® was completely functional. Several data compiling systems and data collection resources were searched to collect data such as Datix record, CEPOD register, clinical governance folder, IT department data source CIU, computerized record of elective operative and non-operative activities as well as emergency operative activities (Figure 1). Other incidents which may or may not be directly influencing clinical care was also recorded (Figure 2).

Five authors separately collected data of five domains that is Datix, Emergency activity, Elective activity, Unaccountable incidents and M&M weekly meetings - Ward clerks (Figure 1). Other incidents which may or may not be directly influencing clinical care was also recorded (Figure 2).
Mortality & Morbidity record, emergency clinical activity, elective clinical activity and unaccountable incidents. Data was gathered on Microsoft Excel spreadsheet and it was validated by all authors prior to the presentation in the departmental clinical governance meeting. The collected data was analysed using chi test to find the significant difference between both groups and \(p < 0.05 \) was set as cut off value for statistical difference. The statistical package SPSS version 25 was used for analysis.

RESULTS

There were 295 clinical incidents in 4 weeks after the introduction of Medway® compared to 205 clinical incidents for same periods when e-oasis® was functional \((p = 0.04) \). There was no difference in mortality, morbidity and CEPOD cancellation or operational rates. However, elective operation cancellation rate \((15 \text{ cases versus } 29 \text{ cases}, p = 0.02) \) and clinic appointment cancellation rate was significantly higher \((71 \text{ patients versus } 146 \text{ patients}, p = 0.02) \) following the introduction of Medway®. Interestingly, the Datix incident reporting rate was significantly reduced during study period. Four major incidents were directly related to either dysfunctional Medway® or lack of optimum staff training to use Medway® (Figure 3). One of the most interesting incidents was the cancelation of 8 elective general surgical operations due to dysfunctional Medway which led the failure to retrieve blood results, group and cross match information and operational failure of anaesthetic equipment in operating room.

DISCUSSION

Conclusion and lessons learnt

- Introduction of new HIT is associated with increased healthcare related incidents. Safety and trouble-shooting strategies should be implemented well in advance before changing HIT.
- Because introduction of a new HIT system is associated with increased healthcare related incidents and therefore, the transition period should be closely monitored.
- An appropriate use of HIT is essential for optimizing the benefits of the HIT in reducing errors.

Limitations

- It is very difficult to correlate that the clinical incidents were directly due to change of HIT because of the presence of several confounding factors.
- Some relevant incidents related to change of HIT are difficult to estimate such as the delay in performance of surgical team during ward rounds and during emergency on-calls.
- There was general lack of awareness among IT professionals and health-care professionals that the change of HIT system or upgrade can affect patient safety and performance. Therefore, there is strong possibility of missing data which end-users failed to document or report.
- This is just an observational study and collected data has strong possibility of reporting and documentation bias.

Future implications

- Safe use of HIT is multi factorial, depending on competency, system quality, information quality, service quality, task-related stressor, training, organization resources, team-work, physical layout, and noise.
• Safety and trouble-shooting strategies should be implemented well in advance before changing HIT.
• An appropriate use of HIT is essential for optimizing the benefits of the health IT in reducing incidents.

REFERENCES